KARP-1 is induced by DNA damage in a p53- and ataxia telangiectasia mutated-dependent fashion.
نویسندگان
چکیده
The KARP-1 (Ku86 Autoantigen Related Protein-1) gene, which is expressed from the human Ku86 autoantigen locus, appears to play a role in mammalian DNA double-strand break repair as a regulator of the DNA-dependent protein kinase complex. Here we demonstrate that KARP-1 gene expression is significantly up-regulated following exposure of cells to DNA damage. KARP-1 mRNA induction was completely dependent on the ataxia telangiectasia and p53 gene products, consistent with the presence of a p53 binding site within the second intron of the KARP-1 locus. These observations link ataxia telangiectasia, p53, and KARP-1 in a common pathway.
منابع مشابه
Ataxia telangiectasia-mutated protein can regulate p53 and neuronal death independent of Chk2 in response to DNA damage.
DNA damage is a key initiator of neuronal death. We have previously shown that the tumor suppressor p53, in conjunction with cyclin-dependent kinases (CDKs), regulates the mitochondrial pathway of death in neurons exposed to genotoxic agents. However, the mechanisms by which p53 is regulated is unclear. Presently, we show that p53 is phosphorylated on Ser-15 following DNA damage and this occurs...
متن کاملPolo-like kinase 1 inactivation following mitotic DNA damaging treatments is independent of ataxia telangiectasia mutated kinase.
Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. Recent reports show that Plk1 is involved in both G2 and mitotic DNA damage checkpoints. Ataxia telangiectasia mutated kinase (ATM) is an important enzyme involved in G2 phase cell cycle arrest following interphase DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in an ATM-/ATM-Rad3-related ki...
متن کاملDNA-PK suppresses a p53-independent apoptotic response to DNA damage.
p53 is required for DNA damage-induced apoptosis, which is central to its function as a tumour suppressor. Here, we show that the apoptotic defect of p53-deficient cells is nearly completely rescued by inactivation of any of the three subunits of the DNA repair holoenzyme DNA-dependent protein kinase (DNA-PK). Intestinal crypt cells from p53 nullizygous mice were resistant to radiation-induced ...
متن کاملPhosphorylation of serine 18 regulates distinct p53 functions in mice.
The p53 protein acts a tumor suppressor by inducing cell cycle arrest and apoptosis in response to DNA damage or oncogene activation. Recently, it has been proposed that phosphorylation of serine 15 in human p53 by ATM (mutated in ataxia telangiectasia) kinase induces p53 activity by interfering with the Mdm2-p53 complex formation and inhibiting Mdm2-mediated destabilization of p53. Serine 18 i...
متن کاملCadmium-induced DNA damage triggers G(2)/M arrest via chk1/2 and cdc2 in p53-deficient kidney proximal tubule cells.
Carcinogenesis is a multistep process that is frequently associated with p53 inactivation. The class 1 carcinogen cadmium (Cd(2+)) causes renal cancer and is known to inactivate p53. G(2)/mitosis (M) arrest contributes to stabilization of p53-deficient mutated cells, but its role and regulation in Cd(2+)-exposed p53-deficient renal cells are unknown. In p53-inactivated kidney proximal tubule (P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 13 شماره
صفحات -
تاریخ انتشار 1998